Geosci. Model Dev. Discuss., 6, 2457–2489, 2013 www.geosci-model-dev-discuss.net/6/2457/2013/ doi:10.5194/gmdd-6-2457-2013 © Author(s) 2013. CC Attribution 3.0 License.

This discussion paper is/has been under review for the journal Geoscientific Model Development (GMD). Please refer to the corresponding final paper in GMD if available.

Quantifying the carbon uptake by vegetation for Europe on a 1 km² resolution using a remote sensing driven vegetation model

K. Wißkirchen¹, M. Tum², K. P. Günther², M. Niklaus², C. Eisfelder², and W. Knorr³

¹Bundeswehr Geo Information Office (BGIO), Frauenberger Straße 250, 53879 Euskirchen, Germany

²German Aerospace Center (DLR), German Remote Sensing Data Center (DFD),

Oberpfaffenhofen, 82234 Wessling, Germany

³University of Bristol, Department of Earth Sciences, Wills Memorial Building, Queens Road, BS8 1RJ, Bristol, UK

Received: 13 February 2013 - Accepted: 3 April 2013 - Published: 11 April 2013

Correspondence to: M. Tum (markus.tum@dlr.de)

Published by Copernicus Publications on behalf of the European Geosciences Union.

Abstract

In this study we compare monthly gross primary productivity (GPP) time series (2000–2007), computed for Europe with the Biosphere Energy Transfer Hydrology (BETHY/DLR) model with monthly data from the eddy covariance measurements network FLUXNET. BETHY/DLR with a spatial resolution of 1 km² is designed for regional 5 and continental applications (here Europe) and operated at the German Aerospace Center (DLR). It was adapted from the BETHY scheme to be driven by remote sensing data and meteorology. Time series of Leaf Area Index (LAI) are used to control the development of vegetation. These are taken from the CYCLOPES database. Meteorological time series are used to regulate meteorological seasonality. These comprise 10 daily information on temperature, precipitation, wind-speed and radiation. Additionally, static maps such as land cover, elevation, and soil type are used. To validate our model results we used eddy covariance measurements from the FLUXNET network of 74 towers across Europe. For forest sites we found that our model predicts between 20% and 40% higher annual GPP sums. In contrast, for cropland sites BETHY/DLR results 15

and 40% nigher annual GPP suffix. In contrast, for cropiand sites BETHY/DLR results show about 18% less GPP than eddy covariance measurements. For grassland sites, between 10% more and 16% less GPP was calculated with BETHY/DLR. A mean total carbon uptake of 2.5 PgCyr⁻¹ (±0.17 Pg) was found for Europe. In addition, this study states on risks that arise from the comparison of modeled data to FLUXNET
 measurements and their interpretation width.

1 Introduction

Since the early 1950s the continuous rise of the atmospheric carbon dioxide concentration is known (Keeling, 1960). The linkage of higher concentrations of climate active gases in the atmosphere with the thread of sustained global climate warming (Houghton et al., 1996) greatly boosted research activities to guantify the various com-

²⁵ (Houghton et al., 1996) greatly boosted research activities to quantify the various components of the global carbon cycle. The terrestrial biosphere plays a prominent role in

this system and thus can lead to major impacts in the atmospheric CO_2 concentration, with only minor changes in its productivity (e.g. Fowler et al., 2009; Friedlingstein et al., 1994). The quantification of the carbon exchange between biosphere and atmosphere on regional and global scales currently relies on modelling approaches. To this effect net primary productivity (NPP) is an often contemplated value, which describes the amount of CO_2 accumulated by vegetation. In this context also the net ecosystem productivity (NEE), which describes the total exchange of carbon within a biome, is used. NEE can be determined by subtracting the heterotrophic respiration from NPP.

5

 To assess NPP, currently two main modelling approaches are established. Models
 which use the concepts of Monteith (1965) and Monsi and Saeki (1953) assume that NPP can be calculated as the product of photosynthetic active radiation (PAR) and the light-use efficiency. Examples are the models EPIC (Environment Policy Integrated Climate) by Williams et al. (1984), CASA (Carnegie-Ames-Stanford Approach) by Potter et al. (1993), and C-Fix by Veroustraete et al. (1994). Another important modelling
 approach follows the approach of Farquhar et al. (1980) who introduced a biophysical model of photosynthesis. This concept is often used for Soil-Vegetation-Atmosphere-Transfer (SVAT) models and dynamic vegetation models as for instance the LPJ (Lund-Potsdam-Jena) model by Prentice et al. (1992), the BIOME3 (Equilibrium Terrestrial Biosphere) model by Haxeltine and Prentice (1996) and the ORCHIDEE (Organizing

²⁰ Carbon and Hydrology in Dynamic Ecosystems) model by Krinner et al. (2005). Most of the just mentioned models are designed for global applications and are run on coarse resolution (e.g. 1° × 1°) or, for regional applications on, e.g. 1 km² resolution. However, only few studies exist for Europe, which regard the carbon exchange of all vegetation types. Vetter et al. (2008) used seven models to investigate NEP time

²⁵ series in Europe. They put a special focus on the year 2003, for which they found consistent patterns in all seven model results. Veroustraete et al. (2002) used the C-Fix model to calculate NEP for the period 1997–1999 and compared their results with Euroflux data. They resulted in a total NEP for Europe of 2.7 Pgyr⁻¹. Jung et al. (2007) performed a study to assess gross primary productivity (GPP) using three different

process-oriented biosphere models. The study showed that uncertainties in meteorological input data have significant effects on the model response. Total GPP values for Europe of 3.6 Pgyr^{-1} to 8.7 Pgyr^{-1} (including parts of Russia) can be found in literature (Jung et al., 2008; Beer et al., 2007). This indicates a high amount of variability.

- ⁵ Uncertainties in model results and their sources were investigated by Lin et al. (2011). They focussed on boreal forests and found that biases in downward shortwave radiation data have most significant effects and result in a systematic error of the annual carbon uptake. However, largest cumulative errors result from biospheric parameters controlling the light-use efficiency and respiration-temperature relationships.
- A further possibility to quantify carbon is to use remote sensing derived products, either directly or as drivers for vegetation models. Remote sensing gives the opportunity to monitor the earth's surface on a regular and high spatial resolution and thus has a potential of immense information gain on a global and regional level. The Moderate-resolution Imaging Spectroradiometer (MODIS) product MOD17 provides continuous
 time series of GPP and NPP on a 1 km² resolution with a near real-time 8 day inter-
- val (Zhao et al., 2005). Vegetation models as BETHY/DLR which are driven by remote sensing bring further advantage, because they couple measured data with complex modeling approaches. With such approaches data assimilation is in principle applicable.
- Model validation is often conducted using data from eddy covariance flux tower measurements. The relationship between carbon exchange and energy flux has been studied before in international networks such as FLUXNET (Baldocchi et al., 2001), as well as in projects such as EUROFLUX (Valentini, 2001) and CarboEurope. This research has shown that eddy covariance flux tower measurements can be used to quantify NEE at the spatial scale of the footprint of a tower (Baldocchi, 1997).

With this study we will contribute to the on-going discussion of the net carbon exchange balance in general and for Europe in special. We will investigate whether BETHY/DLR is suitable for monitoring carbon fluxes by comparing against independent data and present new GPP estimates for Europe for the period 2000–2007 on

a 1 km² resolution. These were calculated with a modified version of our Biosphere Energy Transfer Hydrology (BETHY/DLR) model, which was developed by Knorr (1997) (see also Knorr and Heimann, 2001) and adapted for the use of remote sensing data by Wißkirchen (2005). Furthermore, we compare our results with GPP data taken from the FLUXNET database and state on the robustness and uncertainty of both: model results and measurements.

2 BETHY/DLR model setup

2.1 Input data

BETHY/DLR is designed to be driven by remote sensing data. The condition of vegetation is described by Leaf Area Index (LAI) time series derived from optical sensors (e.g. SPOT-VEGETATION, ENVISAT-MERIS, TERRA/AQUA-MODIS). Vegetation related parameters such as the Normalized Differenced Vegetation Index (NDVI), the Fraction of Absorbed Photosythetic Active Radiation (FAPAR), or LAI are widely used in vegetation and ecosystem models (e.g. Wißkirchen, 2005; Veroustraete et al.,

- ¹⁵ 1994) and can easily be calculated using existing approaches (Gobron et al., 2008; Baret et al., 2007). For this study we used data from the CYCLOPES database. This database contains global LAI time series for the period 1999–2007 on a 1 km^2 resolution, which are offered as 10 day composites in $10^\circ \times 10^\circ$ tiles. The data is freely available.
- Since time series data, which are derived from optical satellites, are often contaminated with gaps and outliers, time series analysis has to be applied to eliminate these data errors. We used a modified harmonic analysis (HA) for un-even spaced data sets based on the least-squares technique (Lomb, 1976; Bittner et al., 1994). Our HA decomposes time series by successively subtracting the highest peak in the power spacetrum etc. resulting finally in a linear combinate.
- spectrum, then computing a new spectrum etc. resulting finally in a linear combination of trigonometric functions, i.e. sine and cosine oscillations. For each harmonic

component, the amplitude, frequency, and phase are found by least-squares fitting approaches. Before applying HA, outliers are determined using criteria for unrealistic fluctuations of vegetation growth. In addition, large gaps (more than 5 missing composites) are filled using a land cover and regional-specific averaged LAI time series. This

- ⁵ approach yields a spatio-temporal continuous dataset as needed for BETHY/DLR. The general advantage of using remote-sensing derived datasets in contrast to standardized growing functions is the possibility to better represent local phenological conditions. However, a combination of both (measured and modelled data) can easily be used for a data assimilation approach.
- In addition to the LAI time series, the CYCLOPES database also provides a land cover/land use classification (LCC) dataset – the Global Landcover Classification 2000 (GLC2000), which was also derived from SPOT data. GLC2000 is representative for the year 2000 and contains 22 global land cover classes. The Land Cover Classification System (LCCS) of the FAO (Food and Agriculture Organization) was used (Bartholome
- and Belward, 2005; DiGregorio and Jansen, 2001) to derive these classes. With the current model setup it is in principle possible to apply any LAI time series and LCC product, irrespective of their source, but preferably with the same spatial resolution. Depending on the availability of input data sources the current model output is on 1 km² resolution but foreseen to be increased to 300 m × 300 m resolution.
- BETHY/DLR is usually run with 10 day LAI data from SPOT/VEGETATION and GLC2000 land cover classification. However, any other data sources with adequate spatial and temporal resolution can be used. For Central Asia the usability of MODIS LAI and MODIS land cover datasets was tested for modeling NPP in Kazakhstan (Eisfelder et al., 2013). Most relevant adaptations to the model that had to made, include
- the frequency of LAI data update interval, as MODIS LAI is provided on a 8 day basis, and the transformation of the land cover classes to BETHY/DLR internal vegetation classes. The usage of 16 day LAI input data for a test site in semi-arid Central Kaza-khstan indicated that this longer time-step might be too coarse to capture variable meteorological conditions (Eisfelder et al., 2013).

Besides information about the condition of vegetation, the model is driven by meteorological time series, as precipitation, temperature, wind-speed and radiation. Knorr (1997) used a weather generator on a daily basis to predict precipitation. Temperature was scaled linearly from monthly to daily averages. Wind speed was considered as ⁵ constant (3 m s⁻¹) and PAR was calculated following the approach of Weiss and Normann (1985) using the solar elevation, earth-sun distance and solar flux, computed from geographical latitude, Julian day and solar hour.

For our study we used data from the operational process chain of the European Centre for Medium-Range Weather Forecasts (ECMWF). The ECMWF re-analysis project

- (ERA-Interim) contains fourth daily data of the temperature at 2 m height, wind speed at 10 m height, soil water content (in the four uppermost soil layers) and cloud cover. Twice daily data of precipitation is also available. All datasets have a spatial resolution of 0.25° × 0.25°. From these datasets, the daily mean, minimum, and maximum temperatures and the water vapour pressure are calculated. Temperatures are scaled linearly
- to $1 \text{ km} \times 1 \text{ km}$ resolution, by using the difference between the ECMWF reference height and global SRTM ($1 \text{ km} \times 1 \text{ km}$) elevation data, and the temperature gradient of the US Standard Atmosphere, which is -0.65 K/100 m:

 T_{ECMWF} represents the reference temperature of ECMWF, h_{ECMWF} is the ECMWF reference elevation and h_{SRTM} the elevation of the SRTM.

²⁰ The ECMWF dataset also includes estimates of daily PAR. However, this dataset is not used. Analysis of Wißkirchen (2005) showed that calculating PAR following the approach of Burridge and Gadd (1974) yields to highly reliable results. Thus, daily fractions of high, medium, and low cloud cover from ECMWF are used to calculate atmospheric transmission. Using the geographical coordinates, the Julian day and year

²⁵ and the atmospheric transmission result in more exact estimates of PAR at 1 km spatial resolution.

Soil type information is also needed. We used the dataset of Batjes (2006), which is based on the FAO-Unesco soil map of the world and the soil profile database of ISRIC's (International Soil Reference and Information Centre) global WISE (World Inventory of

Soil Emission potentials) database. It is freely available as grid file with the spatial resolution of $5 \times 5 \,\text{arc}$ min (~ $9 \,\text{km} \times 9 \,\text{km}$ at equator) and contains information on 128 FAO soil types, including sand, silt, and clay content, layering and depth.

2.2 Processes

- ⁵ The approach to model GPP, NPP, and NEP with BETHY/DLR has previously been described in Knorr and Heimann (2001). However, for our study some processes were refined to make the model better applicable for regional applications. Since most areas in Europe cannot be described by one dominant vegetation type, Wißkirchen (2005) introduced the consideration of two vegetation types per grid cell. This is done by trans-
- lating the LCC into fractions of two vegetation types based on either own estimates or external data (see Table 1). Currently, 33 vegetation types are implemented within BETHY/DLR. With this method it is also possible to model carbon fluxes for coverage of less than 100%. Photosynthesis is calculated independently for each vegetation type fraction on a daily basis. For the case that more specific information on the land cover
- ¹⁵ use (i.e. specific tree species distribution) is available, we introduced ten additional crops and tree species. For all species the following parameters are provided: maximum carboxylation rate, maximum electron transport rate, and maximum plant height (see Table 2).

For all vegetation types new maximum rooting depths were taken from Canadell
 et al. (1996). These values were used to limit the bucket size in its height for the soil water budged. The soil water content was initialized by the cumulative soil water content of the four uppermost layers of the ECMWF soil water at the first simulation day. After initialization the soil water budged is calculated independent from further input data. Since a transition phase needs to be considered criteria were defined to reach
 equilibrium. At first Wißkirchen (2005) introduced a one year transition phase, assuming stable conditions after this time. However, further studies revealed that depending

ing stable conditions after this time. However, further studies revealed that, depending on soil type and environmental conditions, transition phases of up to four years are needed. The length of transition is calculated by comparing the soil water content of

the first simulation day with the content one year later. It is assumed that within stable conditions the soil water content of these two days does not vary more than 5%. Therefore, it is assumed that if less than 10% of the simulated pixels show a variation of more than 5% in their water content, stable conditions are reached.

5 3 Preparation of FLUXNET data

In order to compare our results with independent data, we used eddy covariance measurements, provided by FLUXNET. FLUXNET is an association of regional networks which aims to coordinate regional to global analyses of observations from micrometeorological tower sites. These flux tower sites use eddy covariance methods to measure parameters and fluxes. This includes carbon dioxide, water vapour and energy flow between terrestrial ecosystems and the atmosphere, also including meteorological data. Over 500 towers are operated worldwide from which around 150 are situated in Europe. The European towers were established to measure carbon fluxes over various vegetation types, including temperate conifers, deciduous and evergreen broad-leaved

- forests, croplands, grasslands, evergreen shrubs, and wetlands. The data is provided as half-hourly time series and available at http://www.europe-fluxdata.eu. It includes several pre-processed datasets starting from level-0 data to calculated values of GPP and ecosystem respiration, which are provided as level-4 products. GPP estimates are based on the measured net flux of carbon from the vegetation/soil to the atmosphere
- ²⁰ (called net ecosystem exchange, NEE) and on an estimation of the terrestrial ecosystem respiration (R_{eco}) according to:

Reichstein et al. (2005) proposed a method to estimate ecosystem respiration by determining night-time temperature sensitivities of ecosystem respiration and to extrapolate these estimates to daylight period after Lloyd and Taylor (1994):

 T_0 is the regression parameter with constant value of -46.02 °C, $T_{ref} = 10$ °C is the temperature of reference, T_{Soil} is the soil temperature and R_{ref} the temperature

dependent contribution of respiration. E_0 is the free parameter of activation energy to determine the temperature dependency (Reichstein et al., 2005).

Thus, GPP is given by the difference of measured NEE and estimated daytime $R_{\rm eco}$. Various uncertainties are within this approach and have been previously discussed in

- ⁵ literature. Papale et al. (2006) investigated uncertainties of algorithms and parameter estimations, especially during the pre-processing of the eddy flux data. They found a major concern in the heuristic low turbulence u^* -filtering, which introduces the largest uncertainties, while the quality of storage correction depends on the measured profile of CO₂ concentration. Furthermore, they found that spike removal does not affect
- directly the annual NEE but can affect the quality of gap filled datasets. Gap filling (Moffat et al., 2007) and partitioning (Reichstein et al., 2005; Desai et al., 2008) of NEE in the two components can also result in uncertainties. Reichstein et al. (2005) showed that temperature sensitivity of $R_{\rm eco}$ derived from long-term data (annual) sets is different to the short term temperature sensitivity. Thus, if long-term temperature
- ¹⁵ sensitivity is used for extrapolation to half-hourly daytime respiration of summer active vegetation, a systematic overestimation of R_{eco} of more than 25% might be realistic for annual time-scales. On the other hand, for summer passive vegetation as, e.g. found in the Mediterranean regions an underestimation of annual R_{eco} is observed. Similar results were found by Richardson et al. (2006) who investigated the suitability
- ²⁰ of different respiration models for gap-filling techniques and for partitioning eddy flux measurements to respiration and GPP. They stated that "*Two of the most widely used models of ecosystem and soil respiration, the basic Q10 model and the "restricted" form of the Lloyd and Taylor model* (Lloyd and Taylor, 1994) *do a poor job of accounting for observed variation in ecosystem and soil respiration in comparison with other*
- simple models." In addition they found little differences in the annual sum of respiration for some test sites among the models (~75 gCm⁻² yr⁻¹), but high ranges for other test sites (355 gCm⁻² yr⁻¹), which is approximately 40 % of the mean annual respiration. Reichstein et al. (2007) reported typical uncertainties in eddy covariance flux

measurements of less than $100 \,\text{gCm}^{-2} \,\text{yr}^{-1}$ while the total systematic error, due to non-ideal observations and correction procedures, is below $200 \,\text{gCm}^{-2} \,\text{yr}^{-1}$.

For our analysis we requested GPP data from 74 towers, included in the GHG_Europe (Greenhouse Gas Management in European land use systems), Car-

- ⁵ boltaly and IMECC (Infrastructure for Measurements of the European Carbon Cycle) networks. The towers are located in 18 European countries and are maintained and operated for individual periods by local organisations. A list of all tower sites used in this study is presented in Table 3. As can be seen, the complete simulation period (2000 to 2007) was covered only by few tower sites (DK_SOR, DE_THA, and CH_DAV). Ac-
- ¹⁰ cording to the individual availability of FLUXNET data, we performed a model run with BETHY/DLR for each site. Thus a total of 273 complete measured and modelled years were available. For the model run we translated the reported vegetation type to the corresponding BETHY/DLR type, assuming 90% coverage for each site. Mixed forests were translated to a mixture of 50% evergreen coniferous trees and 50% broadleaved
- deciduous trees (Table 3). Since half-hourly time series of GPP are not directly comparable with BETHY/DLR's model output, the data was aggregated to monthly and annual sums.

4 Results and discussion

The modelled GPP results as calculated with BETHY/DLR for the period 2000–2007 are presented in Fig. 1. It can be seen, that the GPP pattern is dependent on time and space and shows high variations for individual regions. This is especially notable for the area of Romania and West Ukraine. In order to quantify the GPP fluxes, annual values per country are provided in Table 4. From this, it can be seen that on average the CO₂ uptake by vegetation for Europe is about 2.5 Pg (±0.17 Pg) per year. The highest GPP uptake was calculated for 2004 (2.7 Pg) and the lowest for 2001 (2.2 Pg).

In order to compare our results with FLUXNET data, we first calculated annual GPP sums for all stations and modelled years. Statistical analysis revealed for 192 of 273

(70%) measurements a higher GPP in the FLUXNET data. The range is 71 gm⁻² yr⁻¹ to 2766 gm⁻² yr⁻¹ (FLUXNET) and 182 gm⁻² yr⁻¹ to 2386 gm⁻² yr⁻¹ (BETHY/DLR), and is strongly dependent on the vegetation type. Standard deviations and averages for the available years were also calculated (see Table 5). It can be found that on average the standard deviation of the FLUXNET data is 16.1% of the mean GPP value. For the BETHY/DLR results this value is less than half as large (7.7%), indicating less variability in the annual results. This finding corresponds with the assumption, that data provided by FLUXNET is influenced by more environmental conditions and disturbances.

¹⁰ For a closer look to selected sites that represent main land cover types (i.e. deciduous- and evergreen-broadleaved forest, coniferous and mixed forest, grassland, and agriculture), monthly GPP values were calculated and presented as line graph in Fig. 2. Depending on the land cover type, it can be seen that the agreement of this comparison highly varies. We chose results which are exemplary for the main veg-

etation types, as listed above and preferably also cover the whole simulation period (2000–2007). Thus, results for the sites FI_Kaa, FI_Hyy, IT_Cpz and DK_Sor, which almost cover the eight years, are presented. In addition IT_Ro1, which contains missing data at the beginning and at the end, and DE_Geb with five years of data are shown. For all vegetation types a full coverage of the 2000 to 2007 period is exceptional, in particular for agriculture, no longer time-series was available.

As can be seen from Fig. 2 our results for the grassland (a) and coniferous forest (b) sites are comparable with the FLUXNET data. Coefficients of determination (R^2) of 0.83 (grassland, GL) and 0.93 (coniferous forest, CF) combined with low RMSE of 14 gCm⁻² mth⁻¹ (GL) and 39 gCm⁻² mth⁻¹ (CF) were calculated. The average of these values for all grassland sites (23) are 0.71 (R^2) and 66 gCm⁻² mth⁻¹ (RMSE), resulting from 95 site-years. The 19 available CF sites cover 89 site-years with a mean R^2 of 0.79 and a RMSE of 70 gCm⁻² mth⁻¹. Here FLUXNET estimates GPP consistently higher. These results proof a good agreement of both the seasonal patterns, and the absolute GPP values. Good agreement in the seasonal pattern was also found for the mixed

forest (MF) site of BF_Vie (Fig. 2c). Here a R^2 of 0.89 and a RMSE of 40 g C m⁻² mth⁻¹ are obtained. Similar results are found for the other six MF sites (covering 39 siteyears), resulting in a mean RMSE of $67 \,\mathrm{gCm}^{-2} \,\mathrm{mth}^{-1}$ and a R^2 of 0.82. Thus, it can be concluded, that seasonal productivity of grassland and coniferous forest modeled

- by BETHY/DLR can be directly compared with the eddy covariance measurements. 5 Using the diagnostic biospheric carbon flux model VPRM (Vegetation Photosynthesis and Respiration Model) driven by satellite data from MODIS a comparison between simulated and observed hourly NEE data from two eddy covariance flux measurement sites in Ontario and Québec yielded $R^2 = 0.58$ for mixed forest in Ontario and $R^2 = 0.63$
- for Black Spruce in Québec (Lin et al., 2011). 10

The other three examples for agriculture, evergreen broadleaved forest (EF), and deciduous broadleaved forest (DF) (see Fig. 2d-f), show less good agreement. The agricultural sample (Fig. 2f) has a relatively low RMSE of 100 g Cm⁻² mth⁻¹, but also a low R^2 of 0.65, which is mainly based on deviations in amplitude and length of the vegetative period. In the DE_Geb case BETHY/DLR predicts higher GPP values, compared to 15 the FLUXNET measurements. This pattern is not consistent for all thirteen agricultural sites, which we believe is caused by, e.g. management practices (tillage, crop rotation, fertilization, etc.), which is not included in the BETHY/DLR scheme. FLUXNET data was available for 46 site-years, resulting in a RMSE of 113 gCm⁻² mth⁻¹, combined with a R^2 of 0.58. The two broadleaved forest sites (Fig. 2d and e) also show low R^2 20 (0.6) with intermediate RMSE (EF: $54 \text{ gCm}^{-2} \text{ mth}^{-1}$, DF: $75 \text{ gCm}^{-2} \text{ mth}^{-1}$). 26 siteyears were available for EF and 28 for DF. The agreement for all EF sites is very low $(R^2: 0.36, \text{RMSE}: 74 \text{ gCm}^{-2} \text{ mth}^{-1})$. For most of the five sites, the modeled GPP values are consistently higher in the vegetative active phase and lower in the winter season

compared to the estimates provided by FLUXNET. For other sites, however, the com-25 parison shows a contrary pattern. Thus, no clear tendency for evergreen broadleaved forest vegetation can be found.

A closer look at the LAI time series which were used for the IT_Cpz site (Fig. 3) reveals distinct seasonal pattern, which were not expected for evergreen deciduous

Discussion Pape

Discussion Pape

Discussion Pape

Discussion Paper

forest vegetation. It is thus questionable if CYCLOPES data are realistic for this type of vegetation. This finding was already discussed by Garrigues et al. (2008), who also stated that CYCLOPES LAI is most realistic for grassland and agriculture. Significant lower GPP estimates of BETHY/DLR during the winter season might thus be explained

⁵ by uncertainties in the LAI data. Hence, for evergreen deciduous forests, eddy covariance measurements can be seen as more likely to predict realistic GPP values than our model results.

The DF site (IT_Ro1) again shows a clear trend of higher GPP reported by eddy covariance measurements, which is consistent for all eight stations. This results in a mean RMSE of $80 \text{ gCm}^{-2} \text{ mth}^{-1}$, combined with an R^2 of 0.78 for all DF sites. The better agreement for CF sites and less good agreement for deciduous sites stands in accordance to the findings of Tum et al. (2011), who used BETHY/DLR to predict solid wood increase for Germanys forests, and validated their results with empirical data of solid wood increase.

- ¹⁵ Comparability of the two GPP datasets is in principal given, but strongly depends on the vegetation type. Concerning the uncertainty in the model results of BETHY/DLR and the eddy covariance flux measurements, further discussion is needed. To estimate carbon fluxes with the eddy covariance technique meteorological conditions have to be within a defined range. Unfavorable conditions, such as strong non-stationary and non-
- ²⁰ turbulence, cannot be used to calculate fluxes and thus need gap filling approaches (Chen et al., 2012). In addition, further environmental conditions (e.g. complex terrain and vegetation distribution) can negatively influence measurements. These influences have formerly been widely discussed by e.g. Chen et al. (2009), Göckede et al. (2004), or Sogachev et al. (2004). Foken and Wichura (1996) discussed a potential of error
- sources not only in the environmental condition of a tower site (i.e. internal boundary layers, surface layer height, gravity waves, etc.) but also in sensor configurations (e.g. flow distortion, sensor separation, and measuring height). When looking at Fig. 2a and e the FLUXNET data shows two unrealistic high peaks of vegetation activity in the winter seasons (FI_Kaa: month 24 and IT_Ro1: month 46). This pattern can be

found for 28 of the 273 yr (10%), indicating errors caused either by the measurement or post-processing. For some months eddy covariance measurements predict negative values (Fig. 2a,b,f), which is inconsistent with the definition of GPP as computed with BETHY/DLR. Here GPP is defined as the total carbon uptake by vegetation, which is necessarily positive. However, following equation 2 GPP calculated from eddy flux measurements is the sum of measured NEE fluxes and calculated ecosystem respiration R_{eco} . In consequence, if respiration exceeds incoming CO₂-fluxes negative GPP values are possible. Thus these negative values are most likely caused by additional ecosystem components, such as anthropogenic or fauna caused inputs to the system, which

- are indirectly taken into account in the FLUXNET data. Similar findings were made by Mitchell et al. (2009) who found that aside from errors in NEE retrieval, fundamental problems in modeling approaches can lead to discrepancies in the data comparison. Thus low correspondences of modeled and measured NEP (GPP) does not necessarily state on the validity of both data sources. Law et al. (2001) underpinned this finding
 and noted: "errors in the approaches to estimating NEE (eddy covariance approach)
- and NEP (biological approach) are large, but combining biological and eddy flux data is useful for model testing."

A further error source which has to be accounted is the parameterization of BETHY/DLR's photosynthesis. We used parameters as described in Knorr and ²⁰ Heimann (2001) and Table 2. Since these are generalized, improvement could be archived when they are regionalized or scaled using assimilation techniques. Kato et al. (2013) showed that improvements in the terrestrial water and carbon simulations can be achieved if satellite and eddy covariance data are assimilated simultaneously. However before assimilation is applied it has to be proven that general characteristics

²⁵ of carbon fluxes correspond with measured data.

5 Conclusions

5

In this study we introduced the BETHY/DLR vegetation model, which is an adapted version of the BETHY scheme by Knorr and Heimann (2001). BETHY/DLR is optimized to be driven with remote sensing derived products to calculate carbon fluxes. For this study we modelled annual gross primary productivity for the period 2000–2007 for Europe. On average we found annual GPP sums of 2.5 Pg (±0.17 Pg) per year.

To compare our results we used monthly eddy covariance measurements taken from 74 FLUXNET stations, distributed all over Europe. The criterion to include a site was data access and at least one consistent year of measurements. In total, data for eight vegetation types comprising 274 consistent years were available. Analysis showed good agreement between most of the main vegetative types. Especially for grassland and coniferous forest sites the datasets show comparable patterns. Intermediate agreement was found for agriculture and mixed forests, and higher differences for evergreen-broadleaved and deciduous broadleaved forests. It can thus be stated that the two approaches result in comparable patterns.

15 the two approaches result in comparable patterns.

However, differences in the approaches to calculate GPP have to be considered. These are mainly within the definition of measured and modelled GPP, where the eddy covariance technique includes additional carbon fluxes, which are not considered in BETHY/DLR. Thus if eddy covariance measurements are considered to be used to val-

- idate modelled GPP, it has to be taken into account that qualitative statements on the model accuracy cannot be stated. However GPP estimates as provided by FLUXNET can be used to test models on their likeliness to predict, e.g. seasonal vegetation patterns within reasonable degrees of uncertainty. Further studies will proof if our findings for Europe are transferable to other regions. In addition datasets which can be re-
- ²⁵ lated to biomass increase, such as empirical data on above ground biomass increase (i.e. cereal yields, stem wood increase), are seen as valuable for model validation and should be investigated for their applicability.

This study shows that validation of process based modelling approaches is restricted by the data availability and comparability of measured data. Thus it is not only necessary to design comprehensive validation and calibration approaches, but also to gain knowledge of the uncertainty and reliability of the data which is used for comparison.

Since complex process models already play an important role for understanding the dynamics of earth systems, and are particularly used to forecast future responses of vegetation to the noticeable climate change, more effort needs to be spend in collect-ing precise validation data to improve the significance of model results. Further studies should investigate if assimilation of, e.g. eddy covariance and remote sensing derived data can further improve the model results.

Acknowledgements. This study was conducted under the FP7 projects EnerGEO (Grant agreement no.: 226364) and ENDORSE (grant agreement no.: 262892). We thank ECMWF, FLUXNET, MediasFrance and NASA for providing their data. The authors are grateful to the anonymous reviewers.

15 **References**

- Baldocchi, D.: FLUX Footprints within and over forest canopies, Bound.-Lay. Meteorol., 2, 273–293, 1997.
- Baldocchi, D., Falge, E., Gu, L. H., Olsen, R., Hollinger, D., Running, S., Anthoni, P., Bernhofer, C., Davis, K., Evans, R., Fuentes, J., Goldstein, A., Katul, G., Law, B., Lee, X., Malhi, Y.,
- Meyers, T., Munger, W., Oechtel, W., Paw, K. T., Pilegaard, K., Schmid, H. P., Valentini, R., Verma, S., Vesala, T., Wilson, K., and Wofsy, S.: FLUXNET: A new tool to study the temporal and spatial variability of ecosystem-scale carbon dioxide, water vapor, and energy flux densities, B. Am. Meteorol. Soc., 82, 2415–2434, 2001.

Baret, F., Hagolle, O., Geiger, B., Bicheron, P., Miras, B., Huc, M., Berthelot, B., Niño, F.,

- Weiss, M., Samain, O., Roujean, J. L., and Leroy, M.: LAI, fAPAR and fCover CYCLOPES global products derived from VEGETATION Part 1: Principles of the algorithm, Remote Sens. Environ., 110, 275–286, 2007.
 - Bartholome, E. and Belward, A. S.: GLC2000: A new approach to global land cover mapping from Earth observation data, Int. J. Remote Sens., 26, 1959–1977, 2005.

Batjes, N. H.: ISRIC-WISE derived soil properties on a 5 by 5 arc-minutes global grid, Report 2006/02, ISRIC – World Soil Information, Wageningen (with data set), available at: http://www.isric.org, last access: 9 April 2013, 2006.

Beer, C., Reichstein, M., Ciais, P., Farquhar, G. D., and Papale, D.: Mean annual
 GPP of Europe derived from its water balance, Geophys. Res. Lett., 34, L05401, doi:10.1029/2006GL029006, 2007.

Bittner, M., Offermann, D., Bugaeva, I. V., Kokin, G. A., Koshelkov, J. P., Krivolutsky, A., Tarasenko, D. A., Gil-Ojeda, M., Hauchecorne, A., Lübken, F.-J., De La Morena, B. A., Mourier, A., Nakane, H., Oyama, K. I., Schmidlin, F. J., Soule, I., Thomas, L., and Tsuda, T.:

Long period/large scale oscillations of temperature during the DYANA campaign, J. Atmos. Terr. Phys., 56, 1675–1700, 1994.

Burridge, D. M. and Gadd, A. J.: The Meteorological Office Operational 10 Level Numerical Weather Prediction Model. Technical report, British Met. Office, Tech. Notes Nos. 12 and 48, England, London, UK, 1974.

¹⁵ Canadell, J., Jackson, R. B., Ehleringer, J. R., Mooney, H. A., Sala, O. E., and Schulze, E.-D.: Maximum rooting depth of vegetation types at the global scale, Oecologia, 108, 583–595, 1996.

Chen, B., Black, T. A., Coops, N. C., Hilker, T., Trofymow, J. A. T., and Morgenstern, K.: Assessing tower flux footprint climatology and scaling between remotely sensed and Eddy covariance measurements, Bound.-Lay. Meteorol., 130, 137–167, 2009.

20

25

Chen, Y. Y., Chu, C.-R., and Li, M.-H.: A gap-filling model for eddy covariance latent heat flux: Estimating evapotranspiration of a subtropical season evergreen broad-leaved forest as an example, J. Hydrol., 468–469, 101–110, 2012.

Dekker, J. H. and Sharkey, T. D.: Regulation of photosynthesis in triazine-resistent and – susceptible brassica napus, Plant Physiol., 98, 1069–1073, 1992.

- Desai, A. R., Richardson, A. D., Moffat, A. M., Kattge, J., Hollinger, D. Y., Barr, A., Falge, E., Noormets, A., Papale, D., Reichstein, M., Stauch, V. J.: Cross-site evaluation of eddy covariance GPP and RE decomposition techniques. Agr. Forest Meterol., 148, 821–838, 2008. DiGregorio, A. and Jansen, L. J. M.: Land Cover Classification System (LCCS): Classification
- concepts and User Manual for Software Version 1.0, United Nations Food and Agricultural Organization, Rome, 2001.
 - Eisfelder, C., Kuenzer, C., Dech, S., and Buchroithner, M. F.: Comparison of two remote sensing based models for regional net primary productivity estimation a case study in semi-arid

Central Kazakhstan, IEEE J. Sel. Top. Appl., 99, 14 pp. doi:10.1109/JSTARS.2012.2226707, 2012.

- Eisfelder, C., Klein, I., Niklaus, M., and Kuenzer, C.: Net primary productivity in Kazakhstan, its spatio-temporal patterns and relation to meteorological variables, J. Arid Environ., in review, 2013.
- Farquhar, G. D., von Caemmerer, S., and Berry, J. A.: A biochemical model of photosynthesis in leaves of C3 species, Planta, 149, 58–90, 1980.
- Fowler, D., Pilegaard, K., Sutton, M. A., Ambus, P., Raivonen, M., Duyzer, J., Simpson, D., Fagerli, H., Fuzzi, S., Schjoerring, J. K., Grainer, C., Neftel, A., Isaksen, I. S. A., Laj, P.,
- Maione, M., Monks, P. S., Burkhardt, J., Daemmgen, U., Neirynck, J., Personne, E., Wichink-Kruit, R., Butterbach-Bahl, K., Flechard, C., Tuovinen, J. P., Coyle, M., Gerosa, G., Loubet, B., Altimir, N., Gruenhage, L., Ammann, C., Paoletti, E., Mikkelsen, T. N., Ro-Poulsen, H., Cellier, P., Cape, J. N., Horvath, L., Loreto, F., Niinemets, U., Palmer, P. I., Rinne, J., Misztal, P., Nemitz, E., Nilsson, D., Pryor, S., Gallagher, M. W., Vesala, T., Skiba, U., Brueggemann, N., Zechmeister-Boltenstern, S., Williams, J., O'Dowd, C., Facchini, M. C.,
- Brueggemann, N., Zechmeister-Boltenstern, S., Williams, J., O'Dowd, C., Facchini, M. C., de Leeuw, G., Flossman, A., Chaumerliac, N., and Erisman, J. W.: Atmospheric composition change: Ecosystems-Atmosphere interactions, Atmos. Environ., 43, 5193–5267, 2009. Foken, W. and Wichura, B.: Tools for quality assessment of surface-based flux measurements,

Agr. Forest Meteorol., 78, 83-105, 1996.

5

25

- ²⁰ Friedlingstein, P., Müller, J. F., and Brasseur, G. P.: Sensitivity of the terrestrial biosphere to climate changes: impact on the carbon cycle, Environ. Pollut., 83, 143–147, 1994.
 - Garrigues, S., Lacaze, R., Baret, F., Morisette, J. T., Weiss, M., Nickeson, J. E., Fernandes, R., Plummer, S., Shabanov, N. V., Myneni, R. B., Knyazikhin, Y., and Yang, W.: Validation and intercomparison of global Leaf Area Index products derived from remote sensing data, J. Geophys. Res., 113, G2028, doi:10.1029/2007JG000635, 2008.
- Gobron, N., Pinty, B., Aussedat, O., Taberner, M., Faber, O., Mélin, F., Lavergne, T., Robustelli, M., and Snoeij, P.: Uncertainty estimates for the FAPAR operational products derived from MERIS – impact of top-of-atmosphere radiance uncertainties and validation with field data, Remote Sens. Environ., 112, 1871–1883, 2008.
- ³⁰ Göckede, M., Rebmann, C., and Foken, T.: A combination of quality assessment tools for eddy covariance measurements with footprint modelling for the characterisation of complex sites, Agr. Forest Meteorol., 127, 175–188, 2004.

- Haxeltine, A. and Prentice, A. C.: BIOME3: an equilibrium biosphere model based on ecophysiological constraits, resource availability and competition among plant functional types, Global Biogeochem. Cy., 10, 693–709, 1996.
- Houghton, J. T., Meira Filho, L. G., Callander, B. A., Harris, A., Kattenberg, A., and Maskell, K.:
 Climate Change 1995, The Science of Climate Change, Cambridge Univ. Press, New York, 1996.
 - Jacob, J. and Lawlor, D. W.: Stomatal and mesophyll limitations of photosynthesis in phosphate deficient sunflower, maize and wheat plants, J. Ex. Bot., 42, 1003–1011, 1991.
 - Jung, M., Vetter, M., Herold, M., Churkina, G., Reichstein, M., Zaehle, S., Ciais, P., Viovy, N.,
- ¹⁰ Bondeau, A., Chen, Y., Trusilova, K., Feser, F., and Heimann, M.: Uncertainties of modeling gross primary productivity over Europe: A systematic study on the effects of using different drivers and terrestrial biosphere models, Global Biogeochem. Cy., 21, GB4021, doi:10.1029/2006GB002915, 2007.

Jung, M., Verstraete, M., Gobron, N., Reichstein, M., Papale, D., Bondeau, A., Robustelli, M.,

- and Pinty, B.: Diagnostic assessment of European gross primary production, Glob. Change Biol., 14, 1–16, 2008.
 - Kato, T., Knorr, W., Scholze, M., Veenendaal, E., Kaminski, T., Kattge, J., and Gobron, N.: Simultaneous assimilation of satellite and eddy covariance data for improving terrestrial water and carbon simulations at a semi-arid woodland site in Botswana, Biogeosciences, 10, 789– 802, doi:10.5194/bg-10-789-2013, 2013.
- 802, doi:10.5194/bg-10-789-2013, 2013.
 Keeling, C. D.: The concentration and isotopic abundance of carbon dioxide in the atmosphere, Tellus, 12, 200–203, 1960.

25

- Knorr, W.: Satellite remote sensing and modelling of the global CO₂ exchange of land vegetation: a synthesis study, Ph.D. thesis, Max-Planck-Institut für Meteorologie, Hamburg Germany, 1997.
- Knorr, W. and Heimann, M.: Uncertainties in global terrestrial biosphere modeling 1. A comprehensive sensitivity analysis with a new photosynthesis and energy balance scheme, Global Biogeochem. Cy., 15, 207–225, 2001.

Kriedmann, P. E. and Anderson, J. E.: Growth and photosynthetic responses to manganese

and copper deficiencies in wheat (triticum aestivum) and barley grass (*Hordeum Glaucum* and *Hordeum Leporinum*), Aust. J. Plant Physiol., 15, 429–446, 1988.

- Krinner, G., Viovy, N., de Noblet-Decoudré, N., Ogée, J., Polcher, J., Friedlingstein, P., Ciais, P., Sitch, S., and Prentice, I. C.: A dynamic global vegetation model for studies of the coupled atmosphere-biosphere system, Global Biogeochem. Cy., 19, 1–33, 2005.
- Law, B. E., Thornton, P. E., Irvine, J., Anthoni, P. M., and van Tuyl, S.: Carbon storage and fluxes in ponderosa pine forests at different developmental stages, Global Change Biol., 7, 755–777, 2001.
 - Lin, J. C., Pejam, M. R., Chan, E., Wofsy, S. C., Gottlieb, E. W., Margolis, H. A. and Mc-Caughey, J. H.: Attributing uncertainties in simulated biospheric carbon fluxes to different error sources, Glob. Biogeochem. Cy., 25, GB2018, doi:10.1029/2010GB003884, 2011.
- ¹⁰ Lloyd, J. and Taylor, J. A.: On the temperature dependence of soil respiration, Funct. Ecol., 8, 315–323, 1994.

Lomb, N. R.: Least-squares frequency analysis of unequally spaced data, Astrophys. Space Sci., 39, 447–462, 1976.

15

- Moffat, A. M., Papale, D., Reichstein, M., Hollinger, D. Y., Richardson, A. D., Barr, A. G., Beckstein, C., Braswell, B. H., Churkina, G., Desai, A. R., Falge, E., Gove, J. H., Heimann, M., Hui, D., Jarvis, A. J., Kattge, J., Noormets, A., and Stauch, V. J.: Comprehensive comparison of gap-filing techniques for eddy covariance net carbon fluxes, Agr. Forest Meteorol., 147, 209–232, 2007.
 - Monsi, M. and Saeki, T.: Über den Lichtfaktor in den Pflanzengesellschaften und seine Bedeutung für die Stoffproduktion, Jpn. J. Bot., 14, 22–52, 1953.

Monteith, J. L.: Light distribution and photosynthesis in field crops, Ann. Bot., 26, 17–37, 1965. Papale, D., Reichstein, M., Aubinet, M., Canfora, E., Bernhofer, C., Kutsch, W., Longdoz, B.,

Rambal, S., Valentini, R., Vesala, T., and Yakir, D.: Towards a standardized processing of Net Ecosystem Exchange measured with eddy covariance technique: algorithms and uncertainty estimation, Biogeosciences, 3, 571–583, doi:10.5194/bg-3-571-2006, 2006.

Parkhurst, D. F. and Mott, K. A.: Intercellular diffusion limits to CO₂ uptake in leaves, Plant Physiol., 94, 1024–1032, 1990.

Potter, C. S., Randerson, J. T., and Field, C. B.: Terrestrial ecosystem production: a process model based on global satellite and surface data, Global Biogeochem. Cy., 7, 811–841, 1993.

Mitchell, S., Beven, K., and Freer, J.: Multiple sources of predictive uncertainty in modeled estimates of net ecosystem CO₂ exchange, Ecol. Model., 220, 3259–3270, 2009.

- Prentice, I. C., Cramer, W., Harrison, S. P., Leemans, R., Monserud, R. A. and Solomon, A. M.: A global biome model based in plant physiology and dominance, soil properties and climate, J. Biogeogr., 19, 117–134, 1992.
- Rao, M. and Terry, N.: Leaf phosphate status, photosynthesis, and carbon partitioning in sugar
- ⁵ beet: I. Changes in growth, gas exchange, and calvin cycle enzymes, Plant Physiol., 90, 814–819, 1989.
 - Reichstein, M., Falge, E., Baldocchi, D., Papale, D., Aubinet, M., Berbigier, P., Bernhofer, Buchmann, N., Gilmanov, T., Granier, A., Grünwald, T., Havránková, K., Ilvesniemi, H., Janous, D., Knohl, A., Laurila, T., Lohila, A., Loustau, D., Matteucci, G., Meyers, T., Miglietta, F., Ourci-
- val, J.-M., Pumpanen, J., Rambal, S., Rotenberg, E., Sanz, M., Tenhunen, J., Seufert, G., Vaccari, F., Vesala, T., Yakir, D., and Valentini, R.: On the separation of net ecosystem exchange into assimilation and ecosystem respiration: review and improved algorithm, Glob. Change Biol., 11, 1424–1439, 2005.

Reichstein, M., Papale, D., Valentini, R., Aubinet, M., Bernhofer, C., Knohl, A., Laurila, T., Lin-

- droth, A., Moors, E., Pilegaard, K., and Seufert, G.: Determinants of terrestrial ecosystem carbon balance inferred from European eddy covariance flux sites, Geophys. Res. Lett., 34, L01402, doi:10.1029/2006GL027880, 2007.
 - Sogachev, A., Rannik, Ü., and Vesala, T.: Flux footprints over complex terrain covered by heterogenous forest, Agr. Forest Meterol., 121, 229–266, 2004.
- Tum, M., Buchhorn, M., Günther, K. P., and Haller, B. C.: Validation of modelled forest biomass in Germany using BETHY/DLR, Geosci. Model Dev., 4, 1019–1034, doi:10.5194/gmd-4-1019-2011, 2011.
 - Valentini, R.: Fluxes of Carbon, Water and Energy of European Forests, Ecological Studies, Springer, Berlin, 2001.
- van Iersel, M. W.: Carbon use efficiency depends on growth respiration, maintenance respiration, and relative growth rate. A case study with lettuce, Plant Cell Environ., 26, 1441–1449, 2003.
 - Veroustraete, F., Patyn, J., and Myneni, R. B.: Forcing of a simple ecosystem model with fAPAR and climate data to estimate regional scale photosynthetic assimilation, in: VGT, Modelling
- ³⁰ and Climate Change Effects, edited by: Veroustraete, F. and Ceulemans, R., Academic Publishing, The Hague, the Netherlands, 151–177, 1994.
 - Veroustraete, F., Sabbe, H., and Eerens, H.: Estimation of carbon mass fluxes over Europe using the C-Fix model and Euroflux data, Remote Sens. Environ., 83, 376–399, 2002.

- Vetter, M., Churkina, G., Jung, M., Reichstein, M., Zaehle, S., Bondeau, A., Chen, Y., Ciais, P., Feser, F., Freibauer, A., Geyer, R., Jones, C., Papale, D., Tenhunen, J., Tomelleri, E., Trusilova, K., Viovy, N., and Heimann, M.: Analyzing the causes and spatial pattern of the European 2003 carbon flux anomaly using seven models, Biogeosciences, 5, 561–583, doi:10.5194/bq-5-561-2008.2008
- 5 doi:10.5194/bg-5-561-2008, 2008.
 - Weiss, A. and Norman, J.: Partitioning solar radiation into direct and diffuse, visible and nearinfrared components, Agr. Forest Meteorol., 34, 205–213, 1985.
 - Williams, J. R., Jones, C. A., and Dyke, P. T.: A modeling approach to determining the relationship between erosion and soil productivity, T. ASAE, 27, 129–144, 1984.
- Wißkirchen, K.: Modellierung der regionalen CO₂-Aufnahme durch Vegetation, Ph.D. thesis, Meteorologisches Institut der Rhein, Friedrich-Wilhelm-Universität, Bonn, Germany, 2005.
 Wullschleger, S. D.: Biochemical limitations to carbon assimilation in C₃ plants – a retrospective analysis of the A/Ci curves from 109 species, J. Exp. Bot., 44, 907–920, 1993.
- Zhao, M., Heinsch, F. A., Nemani, R. R., and Running, S. W.: Improvements of the MODIS terrestrial gross and net primary production global data set, Remote Sens. Environ., 95, 164–176, 2005.

Table 1. Translation of GLC2000 vegetation classes to BETHY/DLR vegetation types with weighting factors.

GLC2000 class	BETHY/DLR vegetation type	Weighting factor [%]
Tree Cover, broadleaved, evergreen	tropical broadleaf evergreen trees C_3 long grass	80 20
Tree Cover, broadleaved, deciduous, closed	temperate broadleaf deciduous trees C_3 long grass	80 20
Tree Cover, broadleaved, deciduous, open	temperate broadleaf deciduous trees C_3 short grass	40 60
Tree Cover, needle-leaved, evergreen	evergreen coniferous trees C_3 short grass	80 20
Tree Cover, needle-leaved, deciduous	deciduous coniferous trees C ₃ short grass	80 20
Tree Cover, mixed leaf type	temperate broadleaf deciduous trees evergreen coniferous trees	50 50
Tree Cover, regularly flooded, fresh water (& brackish)	temperate broadleaf deciduous trees C_3 long grass	80 20
Tree Cover, regularly flooded, saline water	temperate broadleaf deciduous trees C_3 long grass	80 20
Mosaic: Tree cover/Other natural vegetation	temperate broadleaf deciduous trees evergreen coniferous trees	50 50
Shrub Cover, closed-open, evergreen	temperate broadleaf deciduous trees	90
Shrub Cover, closed-open, deciduous	deciduous shrubs –	90
Herbaceous Cover, closed-open	C ₃ short grass	90
Sparse Herbaceous or sparse Shrub Cover	C ₃ short grass	70
Regularly flooded Shrub and/or Herbaceous Cover	swamp vegetation	90
Cultivated and managed areas	arable crops -	90
Mosaic:	arable crops	50
Gropiand/ Iree Cover/Other natural vegetation	temperate deciduous tree crops	50
Mosaic: Cropland/Shrub or Grass Cover	arable crops C ₃ short grass	50 50

Table 2. Additional vegetation types of the BETHY/DLR model with vegetation parameters (after Knorr, 1997). $V_{\rm M}$: maximum carboxylation rate at 25° in µmol (CO₂) m⁻² s⁻¹; $J_{\rm M}$: maximum electron transport rate at 25° in µmol (CO₂) m⁻² s⁻¹; height in m.

Vegetation Type	$V_{\rm M}$	J_{M}	Height	Source
Sugar beet	129	226	0.5	Rao and Terry (1989)
Soy	94	168	0.8	Parkhurst and Mott (1990)
Sunflower	80	213	2.0	Jacob and Lawlor (1991)
Barley	68	169	1.2	Kriedmann and Anderson (1988)
Wheat	83	193	1.5	Kriedmann and Anderson (1988)
Rapeseed	61	187	1.0	Dekker and Sharkey (1992)
Beech	46	108	30.0	Wullschleger (1993)
Oak	49	100	25.0	Wullschleger (1993)
Fir	12	32	50.0	Wullschleger (1993)
Pine	46	121	40.0	Wullschleger (1993)

Country	Tower location	Abbreviation	Vegetation cover	Plant functional type	Observation used
Austria	Neustift	AT_Neu	grassland	C ₃ short grass	2003–2005
Belgium	Brasschaat	BE_Bra	mixed forest	mixed forest	2000, 2002, 2004, 2006–2007
	Lonzee Vielsalm	BE_Lon BE_Vie	cropland mixed forest	arable crops mixed forest	2005–2007 2000–2003, 2005–2007
Czech Republic	Bily Kriz	CZ_Bk1	evergreen NL forest	evergreen coniferous trees	2004–2007
Denmark	Risbyholm Soroe-LilleBogeskov Enghave	DK₋Ris DK₋Sor DK₋Eng	cropland mixed forest grassland	arable crops mixed forest C_3 short grass	2004–2007 2000–2007 2006–2007
Finland	Hyytiala Kaamanen Sodankyla	FI_Hyy FI_Kaa FI_Sod	evergreen NL forest wetland evergreen NL forest	evergreen coniferous trees C ₃ short grass evergreen coniferous trees	2001–2004, 2006–2007 2000–2001, 2005–2007 2000–2001, 2003–2007
France	Aurade Avignon Fontainebleau Hesse Forest- Sarrebourg Lamasquere Laqueille Laqueille Le Bray Puechabon Mauzac	FR_Aur FR_Avi FR_Fon FR_Hes FR_Lam FR_Lq1 FR_Lq2 FR_Lbr FR_Pue FR_Pue FR_Mau	cropland cropland deciduous BL forest deciduous BL forest cropland grassland grassland evergreen NL forest evergreen BL forest grassland	arable crops arable crops temp. BL deciduos trees temp. BL deciduos trees arable crops C_3 short grass C_3 short grass evergreen coniferous trees temp. BL evergreen trees C_3 short grass	2006-2007 2004-2007 2006-2007 2001-2007 2004-2007 2004-2007 2001-2002, 2004-2007 2001-2007 2006-2007
Germany	Gebesee Grillenburg Hainich Klingenberg Mehrstedt Tharandt Wetzstein	DE_Geb DE_Gri DE_Hai DE_Kli DE_Meh DE_Tha DE_Wet	cropland grassland deciduous BL forest cropland grassland evergreen NL forest evergreen NL forest	$\begin{array}{l} \mbox{arable crops} \\ C_3 \mbox{ short grass} \\ \mbox{temp. BL deciduos trees} \\ \mbox{arable crops} \\ C_3 \mbox{ short grass} \\ \mbox{evergreen coniferous trees} \\ \mbox{evergreen coniferous trees} \\ \mbox{evergreen coniferous trees} \\ \end{array}$	2004–2006 2005–2007 2000–2001, 2003–2005, 2007 2005–2007 2004–2006 2000–2007 2003–2007
Hungary	Bugacpuszta Matra	HU₋Bug HU_Mat	grassland cropland	C ₃ short grass arable crops	2004–2007 2004–2007
Ireland	Carlow1 Dripsey	IE₋Ca1 IE_Dri	cropland grassland	arable crops C_3 short grass	2004 2005

Table 3. 74 FLUXNET tower sites and corresponding vegetation types with associatedBETHY/DLR translations and measuring times in between 2000 and 2007.

Discussion Paper

Discussion Paper

Discussion Paper

Discussion Paper

Table 3. Continued.

Country	Tower location	Abbreviation	Vegetation cover	Plant functional type	Observation used
Italy	Amplero Castelporziano Collelongo- Selva Piana La Mandria Lavarone Lecceto Monte Bondone Nonantola Renon/ Ritten Roccarespampani1 Roccarespampani2 Tolfa Ticino-Canarozzo	IT_Amp IT_Cpz IT_Col IT_Lma IT_Lav IT_Lec IT_Mbo IT_Non IT_Ron IT_Ro1 IT_Ro1 IT_Ro2 IT_Tol IT_Tol IT_Pt1	grassland evergreen BL forest deciduous BL forest deciduous BL forest mixed forest evergreen BL forest grassland mixed forest evergreen NL forest deciduous BL forest deciduous BL forest macchia cropland	C ₃ short grass temp. BL evergreen trees temp. BL deciduos trees mixed forest temp. BL evergreen trees C ₃ short grass mixed forest evergreen coniferous trees temp. BL deciduos trees temp. BL deciduos trees evergreen shrubs arable crops	2003-2006 2001-2002, 2004-2007 2005, 2007 2003, 2006-2007 2001-2006 2006-2007 2003-2007 2002-2003 2001, 2003, 2005-2007 2001-2006 2005-2006 2003
Netherlands	Cabauw	NL_Ca1	grassland	C ₃ short grass	2003–2004, 2006–2007
	Horstermeer	NL_Hor	grassland	C ₃ short grass	2005–2006
	Loobos	NL_Loo	evergreen NL forest	evergreen coniferous trees	2000–2003, 2005–2007
Poland	Polwet	PL_Wet	wetland	C ₃ short grass	2004–2005, 2007
Portugal	Espirra	PT_Esp	evergreen BL forest	temp. BL evergreen trees	2003–2004, 2006–2007
	Mitra (Evora)	PT_Mi1	evergreen BL forest	temp. BL evergreen trees	2003, 2005
	Mitra IV Tojal	PT_Mi2	grassland	C_3 short grass	2005–2007
Slovakia	Tatra	SK_Tat	evergreen NL forest	evergreen coniferous trees	2007
Spain	El Saler-Sueca	ES_Es2	cropland	arable crops	2005–2006
	Las Majadas del Tietar	ES_Lma	evergreen NL forest	evergreen coniferous trees	2004–2007
	Llano de los Juanes	ES_Lju	macchia	evergreen shrubs	2005–2007
	Vall d'Alinya	ES_Vda	grassland	C_3 short grass	2004–2005, 2007
Sweden	Degero Stormyr	SE_Deg	grassland	C ₃ short grass	2001–2002, 2004–2007
	Fajemyr	SE_Faj	ombrotrophic bog	swamp vegetation	2006–2007
	Knottasen	SE_Kno	forest	evergreen coniferous trees	2006
	Norunda	SE_Nor	evergreen NL forest	evergreen coniferous trees	2003, 2005–2007
	Skyttrop1	SE_Sk1	evergreen NL forest	evergreen coniferous trees	2005–2007
	Skyttrop2	SE_Sk2	forest	evergreen coniferous trees	2004–2005
Switzerland	Chamau	CH_Cha	grassland	C_3 short grass	2006–2007
	Davos	CH_Dav	evergreen NL forest	evergreen coniferous trees	2000–2007
	Fruebuehl	CH_Fru	grassland	C_3 short grass	2006–2007
	Laegeren	CH_Lae	mixed forest	mixed forest	2005–2007
	Oensingen 1	CH_Oe1	grassland	C_3 short grass	2003–2007
	Oensingen 2	CH_Oe2	cropland	arable crops	2003–2007
UK	Auchencorth Moss	UK_Amo	grassland	C4 long grass	2005–2006
	East Saltoun	UK_Esa	cropland	arable crops	2005
	Easter Bush	UK_Ebu	grassland	C_3 short grass	2004–2005, 2007
	Hampshire	UK_Ham	deciduous BL forest	temp. BL deciduous trees	2004
	Pang/ Lambourne	UK_PI3	forest	mixed forest	2005–2007

Discussion Paper

Discussion Paper

Discussion Paper

Discussion Paper

Table	4.	Annual	GPP	sums	for	the	period	2000	to	2007	per	country	as	calculated	by
BETH	Y/D	LR in M	tCa ⁻¹												

Country	2000	2001	2002	2003	2004	2005	2006	2007	Average
Albania	11.7	12.0	7.0	11.4	11.0	11.0	8.9	11.0	10.5
Austria	32.7	41.9	31.6	39.0	37.9	43.6	32.1	41.3	37.5
Belarus	85.3	34.6	116.7	96.3	70.5	69.1	68.1	70.6	76.4
Belgium	5.9	9.6	11.8	14.3	10.0	23.2	10.0	10.5	11.9
Bosnia and Herzegovina	40.4	33.3	18.8	24.2	28.1	30.3	25.5	31.0	28.9
Bulgaria	69.6	61.2	44.2	35.2	52.7	65.6	47.0	68.5	55.5
Croatia	43.0	40.6	24.0	32.2	33.6	37.3	31.7	36.8	34.9
Czech Republic	30.3	26.1	27.3	41.0	30.3	45.0	32.6	42.2	34.3
Denmark	12.8	8.6	12.4	14.1	11.4	12.7	14.0	11.3	12.2
Estonia	14.8	11.0	24.3	14.6	4.1	8.6	20.8	14.5	14.1
Finland	69.0	91.9	129.4	98.0	47.6	87.4	147.0	76.2	93.3
France	263.6	271.2	304.0	366.6	370.6	396.6	303.7	289.0	320.7
Germany	127.2	118.0	126.1	176.6	128.9	201.8	122.0	143.3	143.0
Greece	49.0	54.1	36.6	41.8	47.4	45.4	40.0	51.3	45.7
Hungary	61.1	52.2	36.0	48.7	49.1	58.3	36.4	60.0	50.2
Ireland	11.4	15.7	11.5	13.2	10.2	22.1	14.5	15.1	14.2
Italy	147.0	162.9	86.9	141.6	139.2	142.6	152.1	179.1	143.9
Latvia	27.1	14.4	40.9	30.5	8.2	19.1	33.0	21.0	24.3
Liechtenstein	0.0	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1
Lithuania	30.7	13.9	36.6	31.2	12.6	22.5	27.6	17.0	24.0
Luxembourg	0.8	1.4	1.5	1.6	1.4	2.1	1.1	1.3	1.4
The Fmr Yug Rp Macedonia	15.6	15.3	9.4	13.2	14.5	12.2	11.3	12.8	13.1
Republic of Moldova	16.5	11.0	11.5	10.5	15.2	12.8	10.3	16.9	13.1
Netherlands	7.5	6.9	10.6	14.5	8.7	23.7	13.2	9.4	11.8
Norway	25.7	26.9	42.6	33.2	36.3	40.9	46.5	28.9	35.1
Poland	136.9	78.3	123.3	185.0	120.1	164.2	145.8	115.7	133.7
Portugal	52.3	56.0	53.7	53.3	62.0	60.0	59.1	60.1	57.1
Romania	142.2	93.8	80.7	71.3	98.0	134.4	77.7	147.3	105.7
Serbia and Montenegro	79.8	60.3	37.8	40.9	51.4	56.5	43.2	59.3	53.6
Slovakia	28.5	22.6	19.1	28.0	22.7	32.6	24.3	30.7	26.1
Slovenia	15.1	17.1	9.4	11.5	11.9	14.1	11.4	13.4	13.0
Spain	196.2	213.8	204.3	217.2	226.3	221.3	220.7	215.7	214.4
Sweden	101.8	92.8	154.3	122.9	89.2	131.6	162.6	102.7	119.7
Switzerland	12.1	10.5	11.6	16.1	14.5	19.0	12.0	17.7	14.2
Turkey	196.8	212.8	199.6	195.1	226.9	238.1	218.1	206.4	211.7
UK	33.5	44.4	50.6	61.4	34.5	83.0	48.8	53.3	51.2
Ukraine	226.9	147.8	225.9	241.4	214.5	183.8	192.6	215.8	206.1
Sum	2421	2185	2372	2588	2352	2773	2466	2497	2456

Table 5. Average GPP values for the period 2000 to 2007 period and corresponding standard deviation for all 74 tower sites in $MtCa^{-1}$.

		Ave	erage	Standard Deviation				
Site	Years	FLUX BETHY		FLUX	BETHY			
AT₋Neu	3	1871	747	60	69			
BE_Bra	5	1209	513	94	20			
BE_Lon	3	1468	1726	520	147			
BE₋Vie	7	1617	663	93	56			
CH_Cha	2	2580	1192	262	59			
CH_Dav	8	939	339	45	55			
CH₋Fru	2	1881	1298	76	25			
CH_Lae	3	1423	613	292	33			
CH_Oe1	5	1893	1211	255	81			
CH_Oe2	4	1451	1938	537	147			
CZ_Bk1	4	1369	1036	293	44			
DE_Geb	3	1243	1556	226	47			
DE_Gri	3	1477	1327	403	66			
DE_Hai	6	1518	1050	128	293			
DE_Kli	3	1222	914	133	118			
DE_Meh	3	1138	1742	38	138			
DE_Tha	8	1824	888	172	74			
DE_Wet	5	1549	886	188	87			
DK_Ris	4	1248	1524	176	109			
DK_Sor	8	1956	519	126	25			
DK_Eng	2	799	916	133	62			
ES_Es2	2	1287	187	91	6			
ES_Lma	4	1102	625	170	83			
ES_Lju	3	111	435	35	21			
ES_Vda	3	679	981	57	28			
FI₋Hyy	6	1021	749	47	68			
FI_Kaa	5	274	270	38	28			
FI_Sod	7	541	431	86	62			
FR_Aur	2	911	1630	302	9			
FR_Avi	4	1187	1730	479	39			
FR_Fon	2	1759	1164	203	37			
FR_Hes	7	1631	1113	282	53			
FR_Lam	1	1113	1365	-	-			
FR_Lq1	4	1857	1546	223	31			
FR_Lq2	4	1575	1546	158	31			
FR_Lbr	6	1728	919	237	97			
FR_Pue	7	1323	1090	204	84			
FR_Mau	2	819	1047	33	18			

Table 5. Continued.

Site Years FLUX BETHY FLUX BETHY HU_Bug 5 907 938 260 138 HU_Mat 4 804 2025 176 147 IE_Ca1 1 829 1880 - - IE_Dri 1 1358 496 - -	
HU_Bug 5 907 938 260 138 HU_Mat 4 804 2025 176 147 IE_Ca1 1 829 1880 - - IE_Dri 1 1358 496 - -	
HU_Mat 4 804 2025 176 147 IE_Ca1 1 829 1880 – – IE_Dri 1 1358 496 – –	
IE_Ca1 1 829 1880 – – IE_Dri 1 1358 496 – –	
IE_Dri 1 1358 496 – –	
IT_Amp 4 1083 1173 238 44	
IT_Cpz 5 1637 1501 195 35	
IT_Col 2 1354 1426 100 121	
IT_Lma 3 925 915 301 40	
IT_Lav 6 1840 490 129 49	
IT_Lec 2 866 1756 21 32	
IT_Mbo 5 1361 838 91 50	
IT_Non 2 1430 453 59 59	
IT_Ren 5 1118 531 210 22	
IT_Ro1 6 1417 861 111 60	
IT_Ro2 4 1562 1022 132 72	
IT_Tol 2 2088 2324 353 88	
IT_Pt1 1 1505 1808	
NL_Ca1 4 1547 1364 338 41	
NL_Hor 2 1447 887 1 54	
NL_Loo 7 1593 815 77 61	
PL_Wet 3 901 890 94 59	
PT_Esp 4 1670 810 532 105	
PT_Mi1 2 809 949 44 286	
PT_Mi2 3 952 807 368 340	
SE_Deg 6 319 630 43 57	
SE_Faj 2 532 459 80 6	
SE_Kno 1 2257 769	
SE_Nor 4 1367 798 620 17	
SE_Sk1 3 491 812 6 14	
SE_Sk2 2 752 787 682 50	
SK_Tat 1 615 490	
UK_Amo 1 725 911 – –	
UK_Esa 1 2040 1642	
UK_Ebu 3 1702 935 101 91	
UK_Ham 1 2109 1029	
UK_PI3 3 267 570 61 28	

Fig. 1. Annual Gross Primary Productivity for Europe on a 1 km² resolution for the period 2000–2007. High values are represented with green and low values with grey. White areas symbolize urban areas, water bodies and no data.

Fig. 2. Monthly sums of GPP for the period January 2000 to December 2007, for six selected FLUXNET stations. Black courses represent FLUXNET measurements, grey courses BETHY/DLR model results. BL = broadleaved.

